
International Journal of Scientific & Engineering Research, Volume 5, Issue 1, January-2014                                                             445 
ISSN 2229-5518 
 

IJSER © 2014 
http://www.ijser.org 

Numerical bifurcation of a host-parasite model 
undergoing a variation in the growth rate of the 

host population  
Agwu, I. A, Ekaka-a, E.N , Galadima, I.J, Inyama, S.C , Esekhaigbe, E 

         
Abstract: A numerical analysis of a dynamic ecological system is an important tool. In ecological modeling, the behavior of the model is usually studied 
by a means of bifurcation analysis. This standard technique involves the analysis of qualitative changes in the stability of the system. In this paper, we 
study the bifurcation of the trivial steady state solution of a host – parasite model due to a variation in the growth rate of the host population when other 
model parameters are fixed. The critical values of the steady state solution due to fundamental changes in model parameters are obtained. It is found 
that the stability behavior of the trivial solution changes at this bifurcation point. We also found that as the trivial steady – state solution persists through 
the bifurcation point p = 0, d = 0, a2 = 0, this steady – state solution changes from a stable node to a cusp behavior and to a saddle node 
Keywords: Host – parasite, bifurcation analysis, stability, steady state. 
 
 
1. INTRODUCTION  
When species interact the population dynamics of each species is affected. [1] proposed a mathematical model which describes 
host-parasite interactions. In ecological modeling, the behaviour of the model is usually studied by a means of bifurcation 
analysis. [2] Studied the behaviour of an ecological model using the concept of a bifurcation analysis. [3] Reviewed the use of 
bifurcation theory to analyse non- linear dynamical systems. They found that bifurcation analysis gives regimes in the parameter 
space with quantitatively different asymptotic dynamic behaviour of the system. [4] Studied the repercussion of the ecological 
setting on the outcome of conditional or variable interactions by means of a model that incorporates density-dependent 
interaction coefficients. Bifurcation analysis of their model show that these dynamics are modelled by ecological factors that are: 
intrinsic to the association (concerning the sensitivity of the interaction) and extrinsic to the association (the quality of the 
environment referred to each species alone). [5] formulated epidemiological models for the transmission of a pathogen that can 
mutate in the host to create a second infectious mutant strain. They found that under certain circumstances, there is a Hopf 
bifurcation where the endeamic equilibrium loses its stability and periodic solutions appear. [6] Considered the dynamics of a 
two stage population model. A numerical study of their work reveals a rich bifurcation structure, originating from a degenerate 
Bogdanov-Takens (BT) bifurcation point. [7] Quantify the dynamics of prion infection. They conducted a bifurcation analysis of 
the model with respect to two biochemical parameters: the rate of spontaneous transformation and the rate of output of the 
infectious isoform. They found that the bi-stability properties evidenced by Laurent are confined to a certain range of parameters 
and those permanent oscillations of the two isoforms concentrations are possible. Their study also predicts that the output rate 
of the infectious isoform is relatively insensitive to variation of model parameters. [8] Considered ecological consequences of 
global bifurcation in food chain models using the analyses of four previously published ecological ODE food chain models. They 
showed how global bifurcations in these models are related to each other and local bifurcations, and used the Shil’nikov 
homoclinic bifurcation functions as organizing centre of chaos in three dimensional food chain models as an example in their 
consideration of ecological implications of the global bifurcation.  Other works on bifurcation analysis include [9] and [10].In this 
paper, we study the bifurcation of the trivial steady state solution of Host- Parasite model undergoing a variation in the growth 
rate of the host population when other model parameters are fixed using the model of [1]. By trivial steady state we mean that 
which describes the situation with no host and no parasite. 

 
2. HOST-PARASITE MODEL 
A lot of Host-Parasite models have been developed, but in this study, we shall consider the model of [1].The model consists of 
three nonlinear differential equations which describe the dynamics of a Host, Parasite and Top host-population. In this model, 
they made the following assumptions: 
(1) The number of host consumed per unit time by the parasite is proportional to the existing population of the host and the 

parasite 
(2) The population of host grows exponentially in the absence of the parasite. 
(3) The population of the parasite decays exponentially in the absence of the host population. 
(4) The parasite population switches to an alternative food option as when it faces difficulty to find its favourite host. 
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TABLE 2.1: 
NOTATIONS: VARIABLE DESCRIPTION [1] 

H(t): Host population at time t 
 
P(t): Parasites population at time t 
 
T(t): Top host population at time t 
 
 

TABLE 2.1.2:  
PARAMETERS DESCRIPTIONS [1] 

a 1       =  growth rate of the Host Population 
d     =   decay rate of the Parasite Population 
a 2    =  growth rate of the Top Host Population 

2,1, =ibi  measur the consumption effect of parasite population on the Host populations H(t) and top host 
population T(t) respectively. 

2,1, =ici  measures the proportion of consumed host, H(t) and top host, T(t) respectively that becomes new 
parasite biomass, P. 

 3b and 4b  Measure the rate of interactions of the host population, H(t)     and the 
top host population respectively  

1a
d

=β   is the ratio of the decay rate of parasite population to the  growth rate of the Host population 

2a
d

=α  is the ratio of the decay rate of parasite population to the growth rate of the top host population. 

1

2

a
a

=γ   is the ratio of the growth rate of top host population to the host population. 

12

21

ba
ba

=θ   is the product of the ratio of growth rate of the host population to the growth rate of the top host and 

the measure of the consumption effect of parasite population on hosts population. 

12

4

ca
db

=φ   is the product of the ratio of the rate of interaction of top host and decay rate of parasite population to 

growth rate of  top host population and the measure of consumed (parasitized) host population. 
 
Base on the above assumptions, [1] formulated the model given below. 

H T) b - P b -(a = 311dt
dH

 

P T) c + H c + (-d = 21dt
dP

                         (2.0) 

T H) b - P b - a ( = 422dt
dT

 

where a 1 , a 2 , b 1 , b 2 , b 3 , 4b  c1 , c 2 , d, β , α , φ , θ , γ  > 0 are the model parameters. The description of variables and 
each parameter in (2.0) is given above: 
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2.2 Steady State Analysis  
2.2.1 Linearization 
In this section we will assume that F1, F2 and F3 are continuously and partially differentiable functions of H,P and T at an 
arbitrary steady state solution, since this well established result is not the focus of our analysis.        
 Linearizing the model using a1 = �p, p>0 and � a positive constant of proportionality, gives  

                        
















−−−−
++−

−−−−
=

eeee

eeee

eeee

HbPbaTbTb
PcTcHcdPc
HbHbTbPbp

J

42224

2211

3131α
 

 At (0, 0, 0)      
 

                                     















−=

ea
d

p
J

2

0

00
00
00α

 

The eigenvalues of  0J  are 1λ  = �p, 2λ  = -d and 3λ = a2 

 Without bifurcation analysis, the trivial steady state is unstable since 1λ  and 3λ are none negative. 

 
3. BIFURCATION ANALYSIS 
In this section, we consider 27 instances of bifurcation behaviour at the trivial steady state solution: changing parttern of 
eigenvalues  

1.  1λ  <   0,       2λ  <   0,     3λ  <   0 

2.  1λ  <   0,       2λ  =   0,     3λ  =   0 

3.  1λ  <  0,       2λ   =  0,     3λ  <   0 

4.  1λ  =   0,       2λ  <   0,     3λ  <   0 

5.  1λ  <   0,       2λ  >   0,     3λ  =   0 

6.  1λ  <   0,       2λ  =   0,     3λ  >   0 

7.  1λ  =   0,       2λ  <   0,     3λ  >   0 

8.  1λ  >   0,       2λ  <   0,     3λ  =   0 

9.  1λ  >   0,       2λ  =  0,     3λ  <   0 

10.  1λ  =   0,       2λ  >  0,     3λ  <   0 

11.  1λ  <   0,       2λ  =   0,     3λ  =   0 

12.  1λ  =   0,       2λ  <   0,     3λ  =   0 

13.  1λ  =   0,       2λ  =   0,     3λ  <   0 

14.  1λ  >   0,       2λ  =   0,     3λ  =   0 

15.  1λ  =   0,       2λ  >   0,     3λ  =   0 

16.  1λ  =   0,       2λ  =   0,     3λ  >   0 
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17.  1λ  >   0,       2λ  >   0,     3λ  <   0 

18.  1λ  >   0,       2λ  <   0,     3λ  >   0 

19.  1λ  <   0,       2λ  >   0,     3λ  >   0 

20.  1λ  <   0,       2λ  <   0,     3λ  >   0 

21.  1λ  <   0,       2λ  >   0,     3λ  <   0 

22.  1λ  >   0,       2λ  <   0,     3λ  <   0 

23.  1λ  =   0,       2λ  =   0,     3λ  =   0 

24.  1λ  >   0,       2λ  =   0,     3λ  =   0 

25.  1λ  =   0,       2λ  >   0,     3λ  =   0 

26.  1λ  =   0,       2λ  =   0,     3λ  >   0 

27.  1λ  >   0,       2λ  >   0,     3λ  >   0 

 
Case 1:  Ecological Interpretation                                                    

1λ  <   0  ⇒  p < 0 and 0>α    or p > 0 and 0<α               H-population tend to shrink                          

2λ  <   0  ⇒  d > 0        P- population tend to grow 

3λ  <   0  ⇒  a2 < 0      T- population will tend to shrink           

 
 
            
Case 2: Ecological Interpretation                  

1λ  <   0  ⇒  p <  H-population tend to shrink                          

2λ   =  0  ⇒  d = 0  decay rate of P- population is equal to the growth rate 

3λ  =  0  ⇒  a2 = 0 growth rate of T- population is equal to the death rate 

 
Case 3: Ecological Interpretation                 

1λ  <   0  ⇒  p < 0    H-population tend to shrink                            

2λ  =   0  ⇒  d = 0             decay rate of P- population is equal to the growth rate  

3λ  <   0  ⇒  a2 < 0                T- population will tend to shrink                      

 
Case 4: Ecological Interpretation                  

1λ  =   0  ⇒  p = 0    growth rate of H- population is equal to the death rate 

 2λ  <   0  ⇒  d > 0    P- population tend to grow     

3λ  <   0  ⇒  a2 < 0  T- population will tend to shrink                           

 
TABLE 3.1: 

SHOWS OTHER CASES OF BIFURCATION BEHAVIOR AT THE TRIVIAL STEADY STATE. 
Cases 

1λ  2λ  3λ  Stability behavior 

1 P < 0 d > 0 a2 < 0 Stable 
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2 P < 0 d = 0 a2 = 0 Sitting on the cusp 
3 P < 0 d = 0 a2 < 0 Unstable 
4 P = 0 d > 0 a2 < 0 Unstable 
5 P < 0 d < 0 a2 = 0 Unstable 
6 P < 0 d = 0 a2 > 0 

 
Unstable 

7 P = 0 d > 0 a2 > 0 Unstable 
8 P > 0 d > 0 a2 = 0 Unstable 
9 P > 0 d = 0 a2 < 0 Unstable 
10 P = 0 d < 0 a2 < 0 Unstable 
11 P < 0 d = 0 a2 = 0 Sitting on the cusp 
12 P = 0 d > 0 a2 = 0 Sitting on the cusp 
13 P = 0 d = 0 a2 < 0 Sitting on the cusp 
14 P > 0 d = 0 a2 = 0 Sitting on the cusp 
15 P = 0 d < 0 a2 = 0 Sitting on the cusp 
16 P = 0 d = 0 a2 > 0 Sitting on the cusp 
17 P > 0 d < 0 a2 < 0 Unstable 
18 P > 0 d > 0 a2 > 0 Unstable 
19 P < 0 d < 0 a2 > 0 Unstable 
20 P < 0 d > 0 a2 > 0 Unstable 
21 P < 0 d < 0 a2 < 0 Unstable  
22 P > 0 d > 0 a2 < 0 Unstable 
23 P = 0 d = 0 a2 = 0 bifurcation point 
24 P > 0 d = 0 a2 = 0 Sitting on the cusp 
25 P = 0 d < 0 a2 = 0 Sitting on the cusp 
26 P = 0 d = 0 a2 > 0 Sitting on the cusp 
27 P > 0 d < 0 a2 > 0 Unstable 
 
 
4. DISCUSSION OF CORE RESULTS 
Our analysis shows that the trivial steady – state solution is a stable node for p < 0, d > 0, a2 < 0, sitting on the cusp for (P < 0, d 
= 0, a2 = 0), (P < 0, d = 0, a2 = 0), (P = 0, d > 0, a2 = 0), (P = 0, d = 0, a2 < 0), (P > 0, d = 0, a2 = 0), (P = 0, d < 0, a2 = 0), (P = 
0, d < 0, a2 > 0), (P > 0, d = 0, a2 = 0), (P = 0, d < 0, a2 = 0) and (P = 0, d = 0, a2 > 0)  
and saddle for p > 0, d > 0, a2 > 0. Therefore as the trivial steady – state solution persists through the bifurcation point p = 0, d = 
0, a2 = 0, this steady – state solution changes from a stable node to a saddle node.  
 
5. CONCLUSION 
The concepts of bifurcation is not new, but our numerical method of studying bifurcation of the trivial steady state solution which 
have not been seen elsewhere provides valuable insights for effective ecosystem functioning and stability 
In this study, we have successfully utilized the tool of bifurcation analysis to study the fundamental changes in the qualitative 
behaviour of stability with respect to the trivial steady state solution due to a variation of a1, d, and a2 and their combinations.  
The bifurcation analysis of (a2/b4, 0, a1/b3), ( 0, a2/b2, 

d/c2) and  (d/c1, a1/b1,  0 ) due to a variation in a1, d, and a2 and their 
combinations will be a focus of our further work  
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